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CHIRP-Like Signals:
Estimation, Detection and Processing

A Sequential Model-Based Approach

J. V. Candy

I INTRODUCTION

Chirp signals have evolved primarily from radar/sonar signal processing applications specif-
ically attempting to estimate the location of a target in surveillance/tracking volume. The
chirp, which is essentially a sinusoidal signal whose phase changes instantaneously at each

time sample, has an interesting property in that its correlation approximates an impulse
function. It is well-known that a matched-filter detector in radar/sonar estimates the tar-
get range by cross-correlating a replicant of the transmitted chirp with the measurement
data reflected from the target back to the radar/sonar receiver yielding a maximum peak

corresponding to the echo time and therefore enabling the desired range estimate.
In this application, we perform the same operation as a radar or sonar system, that

is, we transmit a “chirp-like pulse” into the target medium and attempt to first detect its

presence and second estimate its location or range. Our problem is complicated by the
presence of disturbance signals from surrounding broadcast stations as well as extraneous
sources of interference in our frequency bands and of course the ever present random noise
from instrumentation.

First, we discuss the chirp signal itself and illustrate its inherent properties and then
develop a model-based processing scheme enabling both the detection and estimation of the
signal from noisy measurement data.

II CHIRP-Like SIGNALS

II.1 LINEAR CHIRP

A chirp signal is a sinusoidal signal characterized by its amplitude α and instantaneous phase
φ, that is,

s(t) = α × cos
(

φ(t)
)

(1)

where the phase is defined by
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φ(t) = 2πf(t) + φ(to) (2)

for f(t) the corresponding instantaneous frequency. The rate of change of the phase is defined
by its derivative

d

dt
φ(t) = 2πf(t) =: ωi(t) (3)

where ωi is defined as the instantaneous angular radian frequency.
The instantaneous frequency can be characterized by a number of different relations one

of which is the “linear” relation

f(t) = β · t + fo (4)

where fo is the initial (sweep) frequency at time to and β is the rate given by

β =
ff − fo

tf
(5)

where ff is the final (sweep) frequency in the time window bounded by the final (sweep)

time tf .
For the linear chirp, the corresponding phase is found by integrating Eq. 3

φ(t) = φ(to) + 2π
∫ t

0

f(α)dα = φ(to) + 2π
(

fo t +
β t2

2

)

(6)

Thus, the corresponding sinusoidal chirp signal is then given by (see Fig. 1)

s(t) = α cos
(

2π(fo · t +
β

2
· t2)

)

(7)

Unfortunately for our problem, we have disturbances and noise that contaminate the

measurement, that is, assuming a sampled-data representation (t → tk) we have

y(tk) = s(tk) + d(tk) + e(tk) + v(tk) (8)

where s is the transmitted chirp, d is potential broadcast disturbances, e is an extraneous

disturbances and v is a zero-mean, Gaussian random noise process with variance Rvv(tk). A
typical raw data output and spectrum are shown in Fig. 2 where we see the noisy sequence
with the disturbances. Is the chirp present?
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Figure 1: Chirp Signal: (a) Time series. (b) Power spectrum (Welch method).
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Figure 2: Raw Chirp Data: (a) Time series. (b) Power spectrum (Welch method) with
extraneous and broadcast disturbances indicated.
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II.2 Frequency-Shift Keying (FSK) Signal

An other alternative to the linear frequency modulation (FM) chirp is the frequency-shift
key (FSK) modulation deemed the simplest form of FM.15 In the M-ary case, M different
frequencies are used to transmit a coded information sequence. The choice of frequency

separation 4f is defined by the FSK-signal

sm(tk) =

√

2Es

T cos 2π
(

fo + m4f
)

tk; m = 0, · · · , M − 1 (9)

where Es = m × Eb is defined as the energy/symbol, T = m × Tb is the symbol interval and
4f = fm − fm−1 with Eb is the signal energy/bit and Tb is the duration of the bit interval.
Usually, M-ary FSK is used to transmit a block of n = log

2
M bits/signal. Here the M-FSK

signals have equal energy Es.
The frequency separation 4f determines the degree of discrimination possible of the

M transmitted signals. Each of these signals can be represented as orthogonal unit-vectors
um scaled by

√Es, that is, sm :=
√Esum where the basis functions are defined bm(tk) =

√

2

T
cos 2π(fo + m4f)tk. The minimum distance between the pairs of signal vectors is given

by d =
√
Es. We will incorporate this FSK representation to develop our model-based

estimators and detectors to follow.15

In order to represent the FSK signal in the time domain, we must introduce the gate
function Gtk(4τ ) defined

Gtk(4τ ) := µ(tk −m4τ ) − µ(tk − (m + 1)4τ ); m = 0, · · · , M − 1 (10)

for µ(·) a unit-step function and 4τ = 1

4f
the reciprocal of the frequency separation or

equivalently Tb the bit interval duration. With this operator available, we can now represent
the temporal FSK signal as

s(tk) =
M−1
∑

m=0

sm(tk)×Gtk(Tb) =

√

2Es

T
M−1
∑

m=0

cos 2π
(

fo+m4f
)

tk

[

µ(tk−mTb)−µ(tk−(m+1)Tb)
]

(11)
A typical FSK signal is shown in Fig. 3 where we see the time series, the instanta-

neous frequency (step-frequencies) and time-frequency spectrogram. We will use this model

subsequently for both signal estimation and detection.
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Figure 3: True FSK Signal: (a) Time series. (b) Step-Frequencies
(20.00, 21.25, 22.5, 23.75, 25.00, 26.25, 27.5, 28.75, 30.00 KHz). (c) Time-Frequency Spectro-
gram.

III Model-Based Signal Estimation: Linear Chirp

Thus, the model-based linear chirp estimation problem can simply be stated as

GIVEN a set of noisy measurement data {y(tk)}, k = 0, 1, · · · , K contaminated with
broadcast disturbances {d(tk)}, extraneous disturbances {e(tk)} and Gaussian noise {v(tk)},
FIND the best estimate of the chirp signal ŝ(tk) or equivalently the parameters {α̂, f̂o, f̂f}

The estimated chirp is obtained directly from its parameter estimates as

ŝ(tk) = α̂ cos
(

f̂o · t + 2π(
β̂

2
· t2)

)

(12)

for

β̂ =
f̂f − f̂o

tf
(13)

Thus, the solution to estimating the linear chirp in the midst of these disturbances reduces

to a problem of parameter estimation.
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III.1 Linear Chirp: Gauss-Markov State-Space Model

We choose to apply the unscented Kalman filter (UKF) to this nonlinear problem by modeling
the parameter variations as a random walk, that is, in state-space form we have that

f(tk) = f(tk−1) + wf (tk−1)

α̂(tk) = α(tk−1) + wα(tk−1) (14)

where f ∈ RNf×1 is the vector of frequency parameters, α is the scalar amplitude and
w ∈ RNf×1 a zero-mean, multivariate Gaussian vector process with covariance Rww(tk).
Here f = [fo ff ]

T and wf = [wo wf ]
T . The corresponding measurement model is given in

Eq. 12 above.
Generally, the UKF algorithm provides the update signal (parameter) estimates as:1

f̂(tk|tk) = f̂ (tk|tk−1) + Kf (tk)ε(tk|tk−1)

α̂(tk|tk) = α̂(tk|tk−1) + Kα(tk)ε(tk|tk−1)

ε(tk|tk−1) = y(tk) − ŷ(tk|tk−1) − d(tk) − e(tk)

ŷ(tk|tk−1) = ŝ(tk|tk) = α̂(tk|tk−1) cos
(

2π(f̂o(tk|tk−1) · tk +
β̂(tk|tk−1)

2
· t2k)

)

K(tk) = Rfε(tk|tk−1) R−1

εε (tk|tk−1) (15)

with the instantaneous frequency (linear chirp) and amplitude α̂(tk|tk) given by

f̂ (tk) := f̂o(tk|tk) · tk +
β̂(tk|tk)

2
· t2k

β̂(tk|tk) =
f̂f (tk|tk) − f̂o(tk|tk)

tf

(16)

Since we are transmitting the chirp signal, we have a good estimate of the starting
values for α, fo, ff , tf that can be used in the signal estimation/detection problem. An
interesting property of the UKF processor is that the innovations (residual errors) should

be approximately zero-mean and white (uncorrelated) indicating that the model “matches”
the data that can be used in “detecting” the presence of the transmitted chirp. That is, the
processor is tuned when the innovations are zero-mean/white and not when these statistical

conditions are not met. Therefore, the processor can be used as an anomaly detector when
these conditions are not satisfied. We discuss this property subsequently.

1The notation θ̂(tk|tk−1) means the estimate of θ at time tk based on all the data up to time tk−1,
Yk−1, {y(tk)}; k = 0, · · · , K
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Thus, the received data can be considered to consist of extraneous and broadcast distur-

bances along with random measurement noise. We developed a set of synthesized measure-
ment data by filtering (low pass) a snip-it of raw measurements to extract the extraneous
disturbance with its power spectrum shown in Fig. 5. Next we synthesized a unit amplitude
(α = 1) chirp and broadcast disturbances. That is, we assume a chirp signal was swept

over the entire record length sweeping up from fo = 20kHz to ff = 30kHz for a period of
tf = 19.7msec at a sampling interval of 4t = 4.8µsec. From the power spectrum of Fig. 1,
we see that the extraneous disturbance is in the frequency range of 0− 19kHz (Fig. 5) with

the broadcast (sinusoid) disturbance at 2.48kHz. For our simulation we chose amplitudes of
0.2 and 0.5, respectively. The simulated data and spectrum (without instrumentation noise)
are shown in Fig. 14. Note that all of the amplitude data was scaled down from actual
measurements. For the simulation we chose a measurement model of

y(tk) = 1.0 cos
(

2π(2× 104tk +3× 104t2k
)

+0.5 sin
(

2π 2.48× 104tk

)

+0.25e(tk)+ v(tk) (17)

for v ∼ N (0, 1 × 10−1). Finally we show the simulated noisy measurement and spectrum in
Fig. 14 with instrumentation noise included obscuring the chirp signal completely.

Next we applied the UKF processor to the data estimate the instantaneous frequency
and compared it in steady state (f̃ = E{f̂(tk|tk)}) and dynamically at each instant as shown

in Fig. 3. Here we see that the model can track the parameters as indicated by its estimate
of the instantaneous frequency and the resulting chirp with the corresponding error. The
UKF processor is “tuned”, since the innovations statistics are zero-mean/white using both a
statistical zero-mean/whiteness test [] as well as the weighted-sum squared residual (WSSR)

test indicating a reasonably tuned processor. The WSSR processor performs a dynamic
whiteness test by sliding a finite length (parameter) window through the data and tests for
whiteness as long as the statistic lies below the threshold.

IV MODEL-BASED SIGNAL ESTIMATION: FSK SIG-

NAL

In this section we develop the model-based estimator for the FSK signal discussed earlier in
Sec. II.2. Recall that the FSK signal can be parameterized as:

sm(tk) = α cos 2π
(

fo + m4f
)

tk; m = 0, · · · , M − 1 (18)

where the amplitude is α =
√

2Es

T
, the carrier frequency is fo and the frequency separation

is 4f . From the signal estimation perspective we need only estimate the amplitude and
separation, since the carrier is well-known as well as the number of transmitted frequencies
M . Therefore the model-based FSK estimation problem including the disturbances (as

before) can be stated as:
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Figure 4: Synthesized Extraneous Disturbance Data: (a) Time series. (b) Power spectrum
(Correlation method).
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Figure 5: Synthesized Data without random instrumentation noise: (a) Time series. (b)
Power spectrum (Correlation method).
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Figure 6: Synthesized Data with random instrumentation noise: (a) Time series. (b) Power
spectrum (Correlation method).
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Figure 7: Model-Based CHIRP Estimation: (a) Estimated Chirp. (b) Linear chirp: True,
Steady-State, Dynamic).
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GIVEN a set of noisy measurement data {y(tk)}, k = 0, 1, · · · , K contaminated with

broadcast disturbances {d(tk)}, extraneous disturbances {e(tk)} and Gaussian noise {v(tk)},
FIND the best estimate of the FSK signal ŝ(tk) or equivalently the parameters {α̂,4f̂}

For this case the measurement model is

y(tk) = s(tk) + d(tk) + e(tk) + v(tk) (19)

and the estimated FSK signal is obtained directly from its parameter estimates as

ŝ(tk) = α̂
M−1
∑

m=0

cos 2π
(

fo + m4f̂
)

tk × Gtk(Tb) (20)

Thus, the solution to estimating the FSK in the midst of these disturbances again
reduces to a problem of parameter estimation as before in the linear chirp case.

IV.1 FSK: Gauss-Markov State-Space Model

We choose to apply the unscented Kalman filter (UKF) to this nonlinear problem by modeling

the parameter variations as a random walk, that is, in state-space form we have that

4f(tk) = 4f(tk−1) + wf(tk−1)

α(tk) = α(tk−1) + wα(tk−1) (21)

where 4f is the frequency separation parameter, α is the scalar amplitude and w ∈ R2×1

a zero-mean, multivariate Gaussian vector process with covariance Rww(tk). Here w =
[wf wα]T . The corresponding measurement model is given in Eq. 19 above.

Generally, the UKF algorithm provides the update signal (parameter) estimates as:

4f̂ (tk|tk) = 4f̂(tk|tk−1) + Kf (tk)ε(tk|tk−1)

α̂(tk|tk) = α̂(tk|tk−1) + Kα(tk)ε(tk|tk−1)

ε(tk|tk−1) = y(tk) − ŷ(tk|tk−1) − d(tk) − e(tk)

ŷ(tk|tk−1) = ŝ(tk|tk) = α̂(tk|tk−1)
M−1
∑

m=0

cos 2π
(

fo + m4f̂ (tk|tk−1)
)

tk × Gtk(Tb)

K(tk) = Rfε(tk|tk−1) R−1

εε (tk|tk−1) (22)

Since we are transmitting the FSK signal, we have a good estimate of the starting values
for α, fo, M that can be used in the signal estimation/detection problem. Recall that the

processor is tuned when the innovations are zero-mean/white and not when these statistical
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conditions are not met. Therefore, the processor can be used as an anomaly detector (as

before) when these conditions are not satisfied. We discuss this property subsequently.
Thus, the received data can be considered to consist of extraneous and broadcast distur-

bances along with random measurement noise. We developed a set of synthesized measure-
ment data (as before for the linear chirp) by filtering (low pass) a snip-it of raw measurements

to extract the extraneous disturbance with its power spectrum shown in Fig. 5. Next we
synthesized a unit amplitude (α = 1) FSK measurement and broadcast disturbances. That
is, we assume a FSK pulse signal was swept over the entire record length sweeping up from

fo = 20KHz to ff = 30KHz for a period of tf = 0.177sec at a sampling interval of
4t = 4.8µsec. From the power spectrum of Fig. 1, we see that the extraneous disturbance
is in the frequency range of 0 − 19KHz (Fig. 8) with the broadcast (sinusoid) disturbance
at 2.48KHz.

For the first simulation, we generated a pulsed FSK signal contaminated in uncorre-
lated Gaussian noise at a −40dB SNR as shown in Fig. 8. Here we see the application of
the model-based processor (MBP) to extract the known FSK signal from the noisy data in
Fig. 8a and observe its corresponding estimated power spectrum in (b). Note that each of

the step-frequencies correspond to our true model simulation with small errors. The perfor-
mance of the MBP is illustrated in Fig. 9 where we see the zero-mean/whiteness statistics
(0.09 > 0.011/1.5%out) and the WSSR test below the threshold indicating a reasonably
tuned processor with a slight bias. When the disturbances are added to the simulation the

true (noise-free) power spectrum appears in Fig. 10 where we locate the disturbance and
signal spectral lines. For our second simulation we added less noise (−22dB SNR)so that
the disturbances could be observed in the spectral data as shown in Fig. 11. For our sig-

nal/disturbance simulation we chose amplitudes of 2.5 and 0.5, respectively. Thus,for the
simulation we chose a measurement model of

y(tk) =
M−1
∑

m=0

cos 2π
(

2×104+0.125×104m
)

tk Gtk(1.97×10−3)+0.5 sin
(

2π 2.48×104
)

tk+2.5e(tk)+v(tk)

(23)
for v ∼ N (0, 8 × 101) for a SNR=−22dB.

The MBP result is shown in Fig. 12 indicating a reasonably tuned processor with the
predicted measurement and estimated (average) spectrum using the parameterized signal

estimates in Fig. 12b. we note the ability of the processor to extract the desired step-
frequencies with little error. This completes the section of the signal estimation problem.
Next we consider the detection problem in detail.
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Figure 8: Model-Based FSK Signal Estimation: (a) Raw data (−40 dB SNR) and estimated
FSK signal. (b) Estimated power spectrum of estimated FSK signal showing frequency lines.
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Figure 9: Model-Based Estimation Performance Metrics: (a) Zero-Mean/Whiteness tests
(Z − M : 0.095 > 0.011, WT : 1.5%). (b) WSSR test (below threshold).
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Figure 10: True FSK with Disturbances: (a) Time series. (b) Power spectrum.
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Figure 11: Model-Based FSK Signal Estimation with Disturbances: (a) Raw data (−22 dB
SNR) and estimated FSK signal. (b) Estimated power spectrum of estimated FSK signal
showing frequency lines.
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Figure 12: Model-Based FSK Signal Estimation with Disturbances: (a) True/Estimated
FSK data (−22 dB SNR). (b) Estimated FSK step-frequency (0.1252 KHz) estimates.
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Figure 13: Model-Based FSK Signal Estimation with Disturbances: (a) Predicted FSK power
spectrum. (b) Estimated FSK power spectrum showing step-frequencies.

20



V SEQUENTIAL DETECTION OF CHIRP PROCESSES

In order to develop a sequential processor [], we must test the binary hypothesis that whether
the measured data have evolved from the transmitted chirp or not. The basic decision

problem is simply stated as:

GIVEN a set of uncertain measurements {y(tk)}; k = 0, 1, · · · , K from a receiver, DE-
CIDE whether or not the signal is the transmitted chirp . If so, “extract” its characteristic
parameters, Θ := {f̂f , f̂o, α̂} and “classify” its type.

We are to test the hypothesis that the set of measurements YK contain our transmitted
chirp. Therefore, we specify the hypothesis test by

H0 : y(tk) = d(tk) + e(tk) + v(tk) [DISTURBANCE/NOISE]

H1 : y(tk) = s(tk; Θ) + d(tk) + e(tk) + v(tk) [CHIRP SIGNAL]

(24)

where s is the chirp signal, Θ is the set of known chirp parameters, d is the broadcast

disturbances, e is the extraneous disturbances and v is the measurement noise (as before).
The fundamental approach of classical detection theory to solving this binary decision

problem is to apply the Neyman-Pearson criterion of maximizing the detection probability
for a specified false alarm rate [] with the chirp parameters known. The result leads to a

likelihood-ratio decision function defined by []

L(YK ; Θ) :=
Pr[YK |Θ;H1]

Pr[YK |Θ;H0]

H1

>
<
H0

T (25)

with threshold T . This expression implies a “batch” decision, that is, we gather the K
samples YK , calculate the likelihood (Eq. 25) over the entire batch of data and compare it
to the threshold T to make the decision.

V.1 Sequential Processor

An alternative to the batch approach is the sequential method which can be developed by
expanding the likelihood ratio for each inter-arrival to obtain

L(YK ; Θ) =
Pr[YK |Θ;H1]

Pr[YK |Θ;H0]
=

Pr[y(t0), y(t1), · · · , y(tK)|Θ;H1]

Pr[y(t0), y(t1), · · · , y(tK)|Θ;H0]
(26)
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From the chain rule of probability and Bayes’ rule [?] for ` = 0, 1, we have that

Pr[YK |Θ;H`] = Pr[y(tK), Yk−1|Θ;H`] = Pr[y(tK)|Yk−1, Θ;H`] × Pr[Yk−1|Θ;H`] (27)

Substituting these expressions into the likelihood ratio above, replacing k → K and

grouping, we obtain

L(Yk; Θ) =

[

Pr[Yk−1|Θ;H1]

Pr[Yk−1|Θ;H0]

]

× Pr[y(tk)|Yk−1, Θ;H1]

Pr[y(tk)|Yk−1, Θ;H0]
(28)

and the recursion or equivalently sequential likelihood ratio for the k-th arrival follows as

L(Yk; Θ) = L(Yk−1; Θ) × Pr[y(tk)|Yk−1, Θ;H1]

Pr[y(tk)|Yk−1, Θ;H0]
; k = 0, · · · , K (29)

with Pr[y(t0)|Y−1, Θ;H`] = Pr[y(t0)|Θ;H`], the prior under each hypothesis.

Therefore, the Wald sequential probability-ratio test is [?], [?]

L(Yk; Θ) > T1(k) Accept H1

T0(k) ≤ L(Yk; Θ) ≤ T1(k) Continue

L(Yk; Θ) < T0(k) Accept H0

(30)

where the thresholds are specified in terms of the false alarm (PFA) and miss (PM) proba-
bilities as

T0(k) =
PM (k)

1 − PFA(k)
T1(k) =

1 − PM(k)

PFA(k)
(31)

These thresholds are determined from a receiver operating characteristic (ROC) curve
(detection versus false alarm probabilities) obtained by simulation or a controlled experi-
ment to calculate the decision function. That is, an operating point is selected from the
ROC corresponding to specific detection (or equivalently miss) and false-alarm probabili-

ties specifying the required thresholds which are calculated according to Eq. 31 for each
parameter update.

A reasonable approach to this problem of making a reliable decision with high confidence
in a timely manner is to develop a sequential detection processor as illustrated in Fig. 14.

At each sample arrival (at y(tk)), we sequentially update the decision function and compare
it to the thresholds to perform the detection—“sample-by-sample”. Here as each sample is
monitored producing the arrival sequence, the processor takes each arrival measurement and

attempts to “decide” whether or not it evolves from a chirp or non-chirp. For each arrival,
the decision function is “sequentially” updated and compared to the detection thresholds
obtained from the ROC curve operating point enabling a rapid decision. Once the threshold
is crossed, the decision (chirp or non-chirp) is made and the arrival is processed; however, if

not enough data is available to make the decision, then another measurement is obtained.
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Figure 14: As each individual data sample is digitized, it is discriminated, estimated, the
decision function calculated and compared to thresholds to DECIDE if the chirp is detected.
Quantitative performance and sequential thresholds are determined from estimated ROC

curve and the selected operating point (detection/false alarm probability).

V.2 Generalized Likelihood-Ratio Test

For our problem, we typically have information about the background, disturbance and

noise parameters, but we rarely have the source information. Therefore, we still can make a
decision, but require estimates of the unknown parameters, that is, Θ̂ → Θ. In this case, we
must construct a composite or generalized likelihood-ratio test (GLRT).

Θ can be considered to be deterministic but unknown, since we are transmitted the

chirp. Here the approach is to estimate the unknown parameter vector Θ̂ → Θ and proceed
with the simple testing. A maximum likelihood estimate Θ̂ML, can be used to create the
GLRT such that

L(Yk; Θ) =

max Pr[Yk|Θ1;H1]
Θ1

max Pr[Yk|H0]
Θ0

(32)

This is the approach we employ initially. The batch solution for the GLRT can also be
extended to the sequential case as before giving the solution by simply replacing Θ̂ML → Θ,
that is,

L(Yk; Θ̂) = L(Yk−1; Θ̂) × Pr[y(tk)|Yk−1, Θ̂1;H1]

Pr[y(tk)|Yk−1, Θ̂0;H0]
; k = 0, 1, · · · , K

(33)

23



Anticipating Gaussian models (exponential family [?]) for our unknown parameters, we

develop the logarithmic form of the sequential likelihood decision function. Simply taking
the natural logarithm of Eq. 33, that is, Λ(YK ; Θ) := lnL(YK ; Θ) we obtain the log-likelihood
sequential decision function as

Λ(Yk; Θ̂) = Λ(Yk−1; Θ̂) + lnPr[y(tk)|Yk−1, Θ̂1;H1] − lnPr[y(tk)|Yk−1, Θ̂0;H0]

(34)

Using these formulations, we develop the detection algorithm for our problem next. We

should note that we only consider the “chirp detection problem” in this paper.

V.3 Sequential Chirp Detection

Here we start with the results of the previous section and incorporate the chirp and distur-

bance processes. For chirp detection, we start with the simple model of Eq. ?? at time y(tk)
leading to the subsequent (sequential) hypothesis test:

H0 : y(tk) = d(tk) + e(tk) + v(tk) [DISTURBANCE/NOISE]

H1 : y(tk; Θ) = s(tk; Θ) + d(tk) + e(tk) + v(tk) [CHIRP/DISTURBANCE]

(35)

The sequential detection solution (as before) for this problem with unknown chirp pa-
rameters follows directly from the GLRT results of Eq. 33 to yield

L(Yk; Θ̂) = L(Yk−1; Θ̂) × Pr[y(tk)|Yk−1, Θ̂;H1]

Pr[y(tk)|Yk−1;H0]
(36)

To implement the processor, we must first determine the required conditional probabil-

ities in order to specify the decision function, that is,

Pr[y(tk)|Yk−1, Θ̂;H1] =
1√

2πRvv

exp
{

− 1

2Rvv

(

y(tk) − ŷ(tk|tk−1; Θ̂)
)2}

(37)

and under the null hypothesis

Pr[y(tk)|Yk−1;H0] =
1√

2πRvv

exp
{

− 1

2Rvv
y2(tk)

}

(38)

where the Gaussian noise is distributed as v ∼ N (0, Rvv).

Therefore, the likelihood ratio becomes (simply)
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L(Yk; Θ) = L(Yk−1; Θ)× exp
{

− 1

2Rvv

[(

y(tk) − ŷ(tk|tk−1; Θ̂)
)2

+ y2(tk)
]}

(39)

which completes the problem with chirp parameters Θ, unknown constants to be estimated

independently.
The equivalent log-likelihood ratio is given by

Λ(Yk; Θ) = Λ(Yk−1; Θ)− 1

2Rvv

[(

y(tk) − ŷ(tk|tk−1; Θ̂)
)2

+ y2(tk)
]

(40)

or simplifying

Λ(Yk; Θ) = Λ(Yk−1; Θ) +
1

2Rvv

[(

2y(tk) − ŷ(tk|tk−1; Θ̂)
)

)
]

× ŷ(tk|tk−1; Θ̂)
)

(41)

We synthesized an ensemble of contaminated chirp data and ran the sequential log-
likelihood ratio detector. The decision function is shown in Fig. 15 where we see each of
the realizations as well as the “jump” create by the windowed chirp signal. A check of its
onset and termination times coincide with our transmit and sweep times. Note that the

detection threshold must be calculated and that implies a ROC curve simulation is required
to establish the thresholds. This completes the development of the sequential Bayesian
detection approach for chirp processes.

VI Summary

We have developed a model-based approach to processing, estimating and detecting a win-

dowed chirp in noisy simulated data.
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Figure 15: Model-Based CHIRP Detection over an Ensemble of 30 Log-Likelihood Realiza-
tions: Note the onset(initial sweep time) and termination (sweep final time) jumps.
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APPENDIX

A Unscented Kalman Filter Processor

In this section we briefly discuss the processors for our problem with details available in Refr.
13. The UKF is an alternative to the nonlinear or extended Kalman filter processor applied
successfully in many of the model-based ocean acoustic applications.3−7 Like the EKF it is
still restricted to a unimodal distribution (single peak), but that distribution need not be
Gaussian. It also performs a linearization (statistical), but not of the system dynamical

model, but of an inherent nonlinear vector transformation requiring “sigma points” which
deterministically characterize the underlying unimodal distribution. These points have been
pre-calculated for the Gaussian case.13 If we place the EKF/UKF into the Bayesian frame-
work, then we see that the underlying posterior distribution has already been decided to be

approximately multivariate Gaussian with the objective to extract the corresponding con-
ditional mean and covariance as accurately as possible. Therefore, we see that the UKF

provides the multivariate posterior solution

P̂r
[

Φ(z`;Θ)|P`

]

= (2π)−NΦ/2|RΦΦ(z`)|−NΦ/2 ×

exp
{

− 1

2
(Φ(z`;Θ)− Φ̂(z`;Θ))TR−1

ΦΦ
(z`)(Φ(z`;Θ) − Φ̂(z`;Θ))

}

(42)

where Φ̂(z`;Θ) is the augmented conditional (modal/parameter) mean at depth z` and
RΦΦ(z`) is the conditional modal covariance based on pressure-field measurements up to

depth z`.
A detailed flow diagram of the UKF is shown in Fig. 16 where we note the basic

predictor/update structure. Much of the algorithm is devoted to the statistical linearization

in which regression estimators are used to perform the transformation while the usual Kalman
filtering equations are used to perform the updates.

We refer the interested reader to the current texts or basic papers for more details.21−25

Thus, we see that there exists a fundamental philosophical difference between the UKF

(Kalman) processor. Their implementations are completely different as well: one based on
approximating the required distribution through statistical linearization and one through an
empirical PMF estimator. This completes the Appendix.
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Figure 16: Unscented Kalman filter algorithm flow diagram: initialization, prediction, up-
date and innovation with z` → t as the index variable.
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